Cargando…
A Novel Surface Electromyographic Signal-Based Hand Gesture Prediction Using a Recurrent Neural Network
Surface electromyographic signal (sEMG) is a kind of bioelectrical signal, which records the data of muscle activity intensity. Most sEMG-based hand gesture recognition, which uses machine learning as the classifier, depends on feature extraction of sEMG data. Recently, a deep leaning-based approach...
Autores principales: | Zhang, Zhen, He, Changxin, Yang, Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412393/ https://www.ncbi.nlm.nih.gov/pubmed/32709164 http://dx.doi.org/10.3390/s20143994 |
Ejemplares similares
-
Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an Artificial Neural Network
por: Zhang, Zhen, et al.
Publicado: (2019) -
Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks
por: Pan, Gang, et al.
Publicado: (2018) -
Surface EMG-Based Instantaneous Hand Gesture Recognition Using Convolutional Neural Network with the Transfer Learning Method
por: Yu, Zhipeng, et al.
Publicado: (2021) -
Smart Home Automation-Based Hand Gesture Recognition Using Feature Fusion and Recurrent Neural Network
por: Alabdullah, Bayan Ibrahimm, et al.
Publicado: (2023) -
A New Spiking Convolutional Recurrent Neural Network (SCRNN) With Applications to Event-Based Hand Gesture Recognition
por: Xing, Yannan, et al.
Publicado: (2020)