Cargando…
Demystifying “drop-outs” in single-cell UMI data
Many existing pipelines for scRNA-seq data apply pre-processing steps such as normalization or imputation to account for excessive zeros or “drop-outs." Here, we extensively analyze diverse UMI data sets to show that clustering should be the foremost step of the workflow. We observe that most d...
Autores principales: | Kim, Tae Hyun, Zhou, Xiang, Chen, Mengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412673/ https://www.ncbi.nlm.nih.gov/pubmed/32762710 http://dx.doi.org/10.1186/s13059-020-02096-y |
Ejemplares similares
-
zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs
por: Parekh, Swati, et al.
Publicado: (2018) -
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data
por: Lause, Jan, et al.
Publicado: (2021) -
The Poisson distribution model fits UMI-based single-cell RNA-sequencing data
por: Pan, Yue, et al.
Publicado: (2023) -
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
por: Chen, Wenan, et al.
Publicado: (2018) -
Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
por: You, Yue, et al.
Publicado: (2021)