Cargando…

Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation

BACKGROUND: Corneal endothelium (CE) images provide valuable clinical information regarding the health state of the cornea. Computation of the clinical morphometric parameters requires the segmentation of endothelial cell images. Current techniques to image the endothelium in vivo deliver low qualit...

Descripción completa

Detalles Bibliográficos
Autores principales: Vigueras-Guillén, Juan P., Sari, Busra, Goes, Stanley F., Lemij, Hans G., van Rooij, Jeroen, Vermeer, Koenraad A., van Vliet, Lucas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412678/
https://www.ncbi.nlm.nih.gov/pubmed/32903308
http://dx.doi.org/10.1186/s42490-019-0003-2
_version_ 1783568659479789568
author Vigueras-Guillén, Juan P.
Sari, Busra
Goes, Stanley F.
Lemij, Hans G.
van Rooij, Jeroen
Vermeer, Koenraad A.
van Vliet, Lucas J.
author_facet Vigueras-Guillén, Juan P.
Sari, Busra
Goes, Stanley F.
Lemij, Hans G.
van Rooij, Jeroen
Vermeer, Koenraad A.
van Vliet, Lucas J.
author_sort Vigueras-Guillén, Juan P.
collection PubMed
description BACKGROUND: Corneal endothelium (CE) images provide valuable clinical information regarding the health state of the cornea. Computation of the clinical morphometric parameters requires the segmentation of endothelial cell images. Current techniques to image the endothelium in vivo deliver low quality images, which makes automatic segmentation a complicated task. Here, we present two convolutional neural networks (CNN) to segment CE images: a global fully convolutional approach based on U-net, and a local sliding-window network (SW-net). We propose to use probabilistic labels instead of binary, we evaluate a preprocessing method to enhance the contrast of images, and we introduce a postprocessing method based on Fourier analysis and watershed to convert the CNN output images into the final cell segmentation. Both methods are applied to 50 images acquired with an SP-1P Topcon specular microscope. Estimates are compared against a manual delineation made by a trained observer. RESULTS: U-net (AUC=0.9938) yields slightly sharper, clearer images than SW-net (AUC=0.9921). After postprocessing, U-net obtains a DICE=0.981 and a MHD=0.22 (modified Hausdorff distance), whereas SW-net yields a DICE=0.978 and a MHD=0.30. U-net generates a wrong cell segmentation in only 0.48% of the cells, versus 0.92% for the SW-net. U-net achieves statistically significant better precision and accuracy than both, Topcon and SW-net, for the estimates of three clinical parameters: cell density (ECD), polymegethism (CV), and pleomorphism (HEX). The mean relative error in U-net for the parameters is 0.4% in ECD, 2.8% in CV, and 1.3% in HEX. The computation time to segment an image and estimate the parameters is barely a few seconds. CONCLUSIONS: Both methods presented here provide a statistically significant improvement over the state of the art. U-net has reached the smallest error rate. We suggest a segmentation refinement based on our previous work to further improve the performance.
format Online
Article
Text
id pubmed-7412678
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-74126782020-09-04 Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation Vigueras-Guillén, Juan P. Sari, Busra Goes, Stanley F. Lemij, Hans G. van Rooij, Jeroen Vermeer, Koenraad A. van Vliet, Lucas J. BMC Biomed Eng Methodology Article BACKGROUND: Corneal endothelium (CE) images provide valuable clinical information regarding the health state of the cornea. Computation of the clinical morphometric parameters requires the segmentation of endothelial cell images. Current techniques to image the endothelium in vivo deliver low quality images, which makes automatic segmentation a complicated task. Here, we present two convolutional neural networks (CNN) to segment CE images: a global fully convolutional approach based on U-net, and a local sliding-window network (SW-net). We propose to use probabilistic labels instead of binary, we evaluate a preprocessing method to enhance the contrast of images, and we introduce a postprocessing method based on Fourier analysis and watershed to convert the CNN output images into the final cell segmentation. Both methods are applied to 50 images acquired with an SP-1P Topcon specular microscope. Estimates are compared against a manual delineation made by a trained observer. RESULTS: U-net (AUC=0.9938) yields slightly sharper, clearer images than SW-net (AUC=0.9921). After postprocessing, U-net obtains a DICE=0.981 and a MHD=0.22 (modified Hausdorff distance), whereas SW-net yields a DICE=0.978 and a MHD=0.30. U-net generates a wrong cell segmentation in only 0.48% of the cells, versus 0.92% for the SW-net. U-net achieves statistically significant better precision and accuracy than both, Topcon and SW-net, for the estimates of three clinical parameters: cell density (ECD), polymegethism (CV), and pleomorphism (HEX). The mean relative error in U-net for the parameters is 0.4% in ECD, 2.8% in CV, and 1.3% in HEX. The computation time to segment an image and estimate the parameters is barely a few seconds. CONCLUSIONS: Both methods presented here provide a statistically significant improvement over the state of the art. U-net has reached the smallest error rate. We suggest a segmentation refinement based on our previous work to further improve the performance. BioMed Central 2019-01-30 /pmc/articles/PMC7412678/ /pubmed/32903308 http://dx.doi.org/10.1186/s42490-019-0003-2 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology Article
Vigueras-Guillén, Juan P.
Sari, Busra
Goes, Stanley F.
Lemij, Hans G.
van Rooij, Jeroen
Vermeer, Koenraad A.
van Vliet, Lucas J.
Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title_full Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title_fullStr Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title_full_unstemmed Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title_short Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
title_sort fully convolutional architecture vs sliding-window cnn for corneal endothelium cell segmentation
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412678/
https://www.ncbi.nlm.nih.gov/pubmed/32903308
http://dx.doi.org/10.1186/s42490-019-0003-2
work_keys_str_mv AT viguerasguillenjuanp fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT saribusra fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT goesstanleyf fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT lemijhansg fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT vanrooijjeroen fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT vermeerkoenraada fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation
AT vanvlietlucasj fullyconvolutionalarchitecturevsslidingwindowcnnforcornealendotheliumcellsegmentation