Cargando…
Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation
BACKGROUND: Corneal endothelium (CE) images provide valuable clinical information regarding the health state of the cornea. Computation of the clinical morphometric parameters requires the segmentation of endothelial cell images. Current techniques to image the endothelium in vivo deliver low qualit...
Autores principales: | Vigueras-Guillén, Juan P., Sari, Busra, Goes, Stanley F., Lemij, Hans G., van Rooij, Jeroen, Vermeer, Koenraad A., van Vliet, Lucas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412678/ https://www.ncbi.nlm.nih.gov/pubmed/32903308 http://dx.doi.org/10.1186/s42490-019-0003-2 |
Ejemplares similares
-
Deep Learning for Assessing the Corneal Endothelium from Specular Microscopy Images up to 1 Year after Ultrathin-DSAEK Surgery
por: Vigueras-Guillén, Juan P., et al.
Publicado: (2020) -
DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae
por: Vigueras-Guillén, Juan P., et al.
Publicado: (2022) -
Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy
por: Selig, Bettina, et al.
Publicado: (2015) -
Transient Peripapillary Retinoschisis in Glaucomatous Eyes
por: van der Schoot, Josine, et al.
Publicado: (2017) -
Gaze Estimation Based on Convolutional Structure and Sliding Window-Based Attention Mechanism
por: Li, Yujie, et al.
Publicado: (2023)