Cargando…
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet
Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induce...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412692/ https://www.ncbi.nlm.nih.gov/pubmed/32633894 http://dx.doi.org/10.1111/jcmm.15489 |
_version_ | 1783568662544777216 |
---|---|
author | Yu, Ting Wang, Yan Chen, Xiaosu Xiong, Wenjie Tang, Yurong Lin, Lin |
author_facet | Yu, Ting Wang, Yan Chen, Xiaosu Xiong, Wenjie Tang, Yurong Lin, Lin |
author_sort | Yu, Ting |
collection | PubMed |
description | Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high‐fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD‐fed rats. In addition, it lowered the levels of lipopolysaccharide and pro‐inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD‐fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll‐like receptor 4 (TLR4), NF‐κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO‐1, Occludin and Claudin‐1. Therefore, in HFD‐induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability. |
format | Online Article Text |
id | pubmed-7412692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74126922020-08-10 Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet Yu, Ting Wang, Yan Chen, Xiaosu Xiong, Wenjie Tang, Yurong Lin, Lin J Cell Mol Med Original Articles Recent research suggested that taking a high‐fat diet (HFD) may lead to a gut microbiota imbalance and colon tissue damage. This would lead to increased intestinal permeability and consequent constant circulation of low‐grade inflammatory cytokines. Spirulina platensis can protect against HFD‐induced metabolic inflammation and can stimulate the growth of beneficial bacteria in in vitro stool cultures. However, it is unknown whether this beneficial effect acts on intestinal tissues. In this study, rats were fed a high‐fat diet fed with 3% S platensis for 14 weeks. We analysed endotoxin, the composition of the microbiota, inflammation and gut permeability. We found that S platensis decreased the bodyweight and visceral fat pads weight of the HFD‐fed rats. In addition, it lowered the levels of lipopolysaccharide and pro‐inflammatory cytokines in serum. Our results showed that S platensis could largely reduce the relative amount of Proteobacteria and the Firmicutes/Bacteroidetes ratio in faecal samples from HFD‐fed rats. S platensis significantly reduced intestinal inflammation, as shown by decreased expression of myeloid differentiation factor 88 (MyD88), toll‐like receptor 4 (TLR4), NF‐κB (p65) and inflammatory cytokines. S platensis also ameliorated the increased permeability and decreased expression of tight junction proteins in the intestinal mucosa, such as ZO‐1, Occludin and Claudin‐1. Therefore, in HFD‐induced gut dysbiosis rats, S platensis benefits health by inhibiting chronic inflammation and gut dysbiosis, and modulating gut permeability. John Wiley and Sons Inc. 2020-07-07 2020-08 /pmc/articles/PMC7412692/ /pubmed/32633894 http://dx.doi.org/10.1111/jcmm.15489 Text en © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Yu, Ting Wang, Yan Chen, Xiaosu Xiong, Wenjie Tang, Yurong Lin, Lin Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title |
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title_full |
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title_fullStr |
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title_full_unstemmed |
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title_short |
Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
title_sort | spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high‐fat diet |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412692/ https://www.ncbi.nlm.nih.gov/pubmed/32633894 http://dx.doi.org/10.1111/jcmm.15489 |
work_keys_str_mv | AT yuting spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet AT wangyan spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet AT chenxiaosu spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet AT xiongwenjie spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet AT tangyurong spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet AT linlin spirulinaplatensisalleviateschronicinflammationwithmodulationofgutmicrobiotaandintestinalpermeabilityinratsfedahighfatdiet |