Cargando…
Characterization of odor-evoked neural activity in the olfactory peduncle
The tenia tecta is extensively interconnected with the main olfactory bulb and olfactory cortical areas and is well positioned to contribute to olfactory processing. However, little is known about odor representation within its dorsal (DTT) and ventral (VTT) components. To address this need, spontan...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412720/ https://www.ncbi.nlm.nih.gov/pubmed/32793841 http://dx.doi.org/10.1016/j.ibror.2020.07.010 |
Sumario: | The tenia tecta is extensively interconnected with the main olfactory bulb and olfactory cortical areas and is well positioned to contribute to olfactory processing. However, little is known about odor representation within its dorsal (DTT) and ventral (VTT) components. To address this need, spontaneous and odor-evoked activity of DTT and VTT neurons was recorded from urethane anesthetized mice and compared to activity recorded from adjacent areas within adjacent caudomedial aspects of the anterior olfactory nucleus (AON). Neurons recorded from DTT, VTT, and AON exhibited odor-selective alterations in firing rate in response to a diverse set of monomolecular odorants. While DTT and AON neurons exhibited similar tuning breadth, selectivity, and response topography, the proportion of odor-selective neurons was substantially higher in the DTT. These findings provide evidence that the tenia tecta may contribute to the encoding of specific stimulus attributes. Further work is needed to fully characterize functional organization of the tenia tecta and its contribution to sensory representation and utilization. |
---|