Cargando…
Wheat ear counting using K-means clustering segmentation and convolutional neural network
BACKGROUND: Wheat yield is influenced by the number of ears per unit area, and manual counting has traditionally been used to estimate wheat yield. To realize rapid and accurate wheat ear counting, K-means clustering was used for the automatic segmentation of wheat ear images captured by hand-held d...
Autores principales: | Xu, Xin, Li, Haiyang, Yin, Fei, Xi, Lei, Qiao, Hongbo, Ma, Zhaowu, Shen, Shuaijie, Jiang, Binchao, Ma, Xinming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412807/ https://www.ncbi.nlm.nih.gov/pubmed/32782453 http://dx.doi.org/10.1186/s13007-020-00648-8 |
Ejemplares similares
-
Segmentation and counting of wheat spike grains based on deep learning and textural feature
por: Xu, Xin, et al.
Publicado: (2023) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Hussain, Raabid, et al.
Publicado: (2021) -
Occlusion Robust Wheat Ear Counting Algorithm Based on Deep Learning
por: Wang, Yiding, et al.
Publicado: (2021) -
Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset
por: Shao, Hongmin, et al.
Publicado: (2021)