Cargando…
Cross-Modal Data Programming Enables Rapid Medical Machine Learning
A major bottleneck in developing clinically impactful machine learning models is a lack of labeled training data for model supervision. Thus, medical researchers increasingly turn to weaker, noisier sources of supervision, such as leveraging extractions from unstructured text reports to supervise im...
Autores principales: | Dunnmon, Jared A., Ratner, Alexander J., Saab, Khaled, Khandwala, Nishith, Markert, Matthew, Sagreiya, Hersh, Goldman, Roger, Lee-Messer, Christopher, Lungren, Matthew P., Rubin, Daniel L., Ré, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413132/ https://www.ncbi.nlm.nih.gov/pubmed/32776018 http://dx.doi.org/10.1016/j.patter.2020.100019 |
Ejemplares similares
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Eyuboglu, Sabri, et al.
Publicado: (2021) -
Automated Lung Ultrasound Pulmonary Disease Quantification Using an Unsupervised Machine Learning Technique for COVID-19
por: Sagreiya, Hersh, et al.
Publicado: (2023) -
An integrative method for scoring candidate genes from association studies: application to warfarin dosing
por: Tatonetti, Nicholas P, et al.
Publicado: (2010) -
A machine-compiled database of genome-wide association studies
por: Kuleshov, Volodymyr, et al.
Publicado: (2019)