Cargando…
Medical Knowledge Graph to Enhance Fraud, Waste, and Abuse Detection on Claim Data: Model Development and Performance Evaluation
BACKGROUND: Fraud, Waste, and Abuse (FWA) detection is a significant yet challenging problem in the health insurance industry. An essential step in FWA detection is to check whether the medication is clinically reasonable with respect to the diagnosis. Currently, human experts with sufficient medica...
Autores principales: | Sun, Haixia, Xiao, Jin, Zhu, Wei, He, Yilong, Zhang, Sheng, Xu, Xiaowei, Hou, Li, Li, Jiao, Ni, Yuan, Xie, Guotong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413281/ https://www.ncbi.nlm.nih.gov/pubmed/32706714 http://dx.doi.org/10.2196/17653 |
Ejemplares similares
-
Fraud and Abuse in the Saudi Healthcare System: A Triangulation Analysis
por: Alonazi, Wadi B.
Publicado: (2020) -
Medical Fraud and Abuse Detection System Based on Machine Learning
por: Zhang, Conghai, et al.
Publicado: (2020) -
Fraud Claims Filed Involving Practicing Ophthalmologists from 1985 Through 2020
por: Sharma, Meghan, et al.
Publicado: (2023) -
Consumer Knowledge about Food Labeling and Fraud
por: Moreira, Maria João, et al.
Publicado: (2021) -
No evidence for systematic voter fraud: A guide to statistical claims about the 2020 election
por: Eggers, Andrew C., et al.
Publicado: (2021)