Cargando…
Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study
BACKGROUND: Data collected by an actigraphy device worn on the wrist or waist can provide objective measurements for studies related to physical activity; however, some data may contain intervals where values are missing. In previous studies, statistical methods have been applied to impute missing v...
Autores principales: | Jang, Jong-Hwan, Choi, Junggu, Roh, Hyun Woong, Son, Sang Joon, Hong, Chang Hyung, Kim, Eun Young, Kim, Tae Young, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413283/ https://www.ncbi.nlm.nih.gov/pubmed/32445459 http://dx.doi.org/10.2196/16113 |
Ejemplares similares
-
Modeling Brain Volume Using Deep Learning-Based Physical Activity Features in Patients With Dementia
por: Park, Bumhee, et al.
Publicado: (2022) -
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Construction of an Electrocardiogram Database Including 12 Lead Waveforms
por: Chung, Dahee, et al.
Publicado: (2018) -
Self–Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study
por: Gwon, Hansle, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Kim, Taesung, et al.
Publicado: (2021)