Cargando…

Effect of the expiratory positive airway pressure on dynamic hyperinflation and exercise capacity in patients with COPD: a meta-analysis

Expiratory positive airway pressure (EPAP) is widely applicable, either as a strategy for pulmonary reexpansion, elimination of pulmonary secretion or to reduce hyperinflation. However, there is no consensus in the literature about the real benefits of EPAP in reducing dynamic hyperinflation (DH) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardoso, Dannuey Machado, Gass, Ricardo, Sbruzzi, Graciele, Berton, Danilo Cortozi, Knorst, Marli Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413366/
https://www.ncbi.nlm.nih.gov/pubmed/32764718
http://dx.doi.org/10.1038/s41598-020-70250-4
Descripción
Sumario:Expiratory positive airway pressure (EPAP) is widely applicable, either as a strategy for pulmonary reexpansion, elimination of pulmonary secretion or to reduce hyperinflation. However, there is no consensus in the literature about the real benefits of EPAP in reducing dynamic hyperinflation (DH) and increasing exercise tolerance in subjects with chronic obstructive pulmonary disease (COPD). To systematically review the effects of EPAP application during the submaximal stress test on DH and exercise capacity in patients with COPD. This meta-analysis was performed from a systematic search in the PubMed, EMBASE, PeDRO, and Cochrane databases, as well as a manual search. Studies that evaluated the effect of positive expiratory pressure on DH, exercise capacity, sensation of dyspnea, respiratory rate, peripheral oxygen saturation, sense of effort in lower limbs, and heart rate were included. GRADE was used to determine the quality of evidence for each outcome. Of the 2,227 localized studies, seven studies were included. The results show that EPAP did not change DH and reduced exercise tolerance in the constant load test. EPAP caused a reduction in respiratory rate after exercise (− 2.33 bpm; 95% CI: − 4.56 to − 0.10) (very low evidence) when using a pressure level of 5 cmH(2)O. The other outcomes analyzed were not significantly altered by the use of EPAP. Our study demonstrates that the use of EPAP does not prevent the onset of DH and may reduce lower limb exercise capacity in patients with COPD. However, larger and higher-quality studies are needed to clarify the potential benefit of EPAP in this population.