Cargando…
Development and validation of a model for predicting incident type 2 diabetes using quantitative clinical data and a Bayesian logistic model: A nationwide cohort and modeling study
BACKGROUND: Obesity is closely related to the development of insulin resistance and type 2 diabetes (T2D). The prevention of T2D has become imperative to stem the rising rates of this disease. Weight loss is highly effective in preventing T2D; however, the at-risk pool is large, and a clinically mea...
Autores principales: | Wilkinson, Lua, Yi, Nengjun, Mehta, Tapan, Judd, Suzanne, Garvey, W. Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413417/ https://www.ncbi.nlm.nih.gov/pubmed/32764746 http://dx.doi.org/10.1371/journal.pmed.1003232 |
Ejemplares similares
-
Correction: Development and validation of a model for predicting incident type 2 diabetes using quantitative clinical data and a Bayesian logistic model: A nationwide cohort and modeling study
por: Wilkinson, Lua, et al.
Publicado: (2023) -
Fast Bayesian parameter estimation for stochastic logistic growth models
por: Heydari, Jonathan, et al.
Publicado: (2014) -
A Bayesian hierarchical logistic regression model of multiple informant family health histories
por: Lin, Jielu, et al.
Publicado: (2019) -
Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model
por: Xie, Jing, et al.
Publicado: (2019) -
Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy
por: Ducher, Michel, et al.
Publicado: (2013)