Cargando…
Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype
Epithelial-mesenchymal transition (EMT) is a critical early step in cancer metastasis and a complex process that involves multiple factors. In this study, we used proteomics approaches to investigate the secreted proteins (secretome) of paired human androgen-repressed prostate cancer (ARCaP) cell li...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413421/ https://www.ncbi.nlm.nih.gov/pubmed/32764784 http://dx.doi.org/10.1371/journal.pone.0237222 |
_version_ | 1783568792451809280 |
---|---|
author | Bou-Dargham, Mayassa J. Sang, Qing-Xiang Amy |
author_facet | Bou-Dargham, Mayassa J. Sang, Qing-Xiang Amy |
author_sort | Bou-Dargham, Mayassa J. |
collection | PubMed |
description | Epithelial-mesenchymal transition (EMT) is a critical early step in cancer metastasis and a complex process that involves multiple factors. In this study, we used proteomics approaches to investigate the secreted proteins (secretome) of paired human androgen-repressed prostate cancer (ARCaP) cell lines, representing the epithelial (ARCaP-E) and mesenchymal (ARCaP-M) phenotypes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed high levels of proteins involved in bone remodeling and extracellular matrix degradation in the ARCaP-M cells, consistent with the bone metastasis phenotype. Furthermore, LC-MS/MS showed a significantly higher level of the serine protease granzyme B (GZMB) in ARCaP-M conditioned media (CM) compared to that of ARCaP-E. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect mRNA and Western blot to detect protein expression, we further demonstrated that the GZMB gene was expressed by ARCaP-M and the protein was secreted extracellularly. ARCaP-M cells with GZMB gene knockdown using small interfering RNA (siRNA) have markedly reduced invasiveness as demonstrated by the Matrigel invasion assay in comparison with the scrambled siRNA negative control. This study reports that GZMB secretion by mesenchymal-like androgen-repressed human prostate cancer cells promotes invasion, suggesting a possible extracellular role for GZMB in addition to its classic role in immune cell-mediated cytotoxicity. |
format | Online Article Text |
id | pubmed-7413421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74134212020-08-13 Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype Bou-Dargham, Mayassa J. Sang, Qing-Xiang Amy PLoS One Research Article Epithelial-mesenchymal transition (EMT) is a critical early step in cancer metastasis and a complex process that involves multiple factors. In this study, we used proteomics approaches to investigate the secreted proteins (secretome) of paired human androgen-repressed prostate cancer (ARCaP) cell lines, representing the epithelial (ARCaP-E) and mesenchymal (ARCaP-M) phenotypes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed high levels of proteins involved in bone remodeling and extracellular matrix degradation in the ARCaP-M cells, consistent with the bone metastasis phenotype. Furthermore, LC-MS/MS showed a significantly higher level of the serine protease granzyme B (GZMB) in ARCaP-M conditioned media (CM) compared to that of ARCaP-E. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect mRNA and Western blot to detect protein expression, we further demonstrated that the GZMB gene was expressed by ARCaP-M and the protein was secreted extracellularly. ARCaP-M cells with GZMB gene knockdown using small interfering RNA (siRNA) have markedly reduced invasiveness as demonstrated by the Matrigel invasion assay in comparison with the scrambled siRNA negative control. This study reports that GZMB secretion by mesenchymal-like androgen-repressed human prostate cancer cells promotes invasion, suggesting a possible extracellular role for GZMB in addition to its classic role in immune cell-mediated cytotoxicity. Public Library of Science 2020-08-07 /pmc/articles/PMC7413421/ /pubmed/32764784 http://dx.doi.org/10.1371/journal.pone.0237222 Text en © 2020 Bou-Dargham, Amy Sang http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bou-Dargham, Mayassa J. Sang, Qing-Xiang Amy Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title | Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title_full | Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title_fullStr | Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title_full_unstemmed | Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title_short | Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
title_sort | secretome analysis reveals upregulated granzyme b in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413421/ https://www.ncbi.nlm.nih.gov/pubmed/32764784 http://dx.doi.org/10.1371/journal.pone.0237222 |
work_keys_str_mv | AT boudarghammayassaj secretomeanalysisrevealsupregulatedgranzymebinhumanandrogenrepressedprostatecancercellswithmesenchymalandinvasivephenotype AT sangqingxiangamy secretomeanalysisrevealsupregulatedgranzymebinhumanandrogenrepressedprostatecancercellswithmesenchymalandinvasivephenotype |