Cargando…
Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy
AIM: The present work concerns the comparison of the performances of three systems for dosimetry in RPT that use different techniques for absorbed dose calculation (organ-level dosimetry, voxel-level dose kernel convolution and Monte Carlo simulations). The aim was to assess the importance of the ch...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413508/ https://www.ncbi.nlm.nih.gov/pubmed/32764764 http://dx.doi.org/10.1371/journal.pone.0236466 |
_version_ | 1783568812143017984 |
---|---|
author | Finocchiaro, Domenico Berenato, Salvatore Bertolini, Valentina Castellani, Gastone Lanconelli, Nico Versari, Annibale Spezi, Emiliano Iori, Mauro Fioroni, Federica Grassi, Elisa |
author_facet | Finocchiaro, Domenico Berenato, Salvatore Bertolini, Valentina Castellani, Gastone Lanconelli, Nico Versari, Annibale Spezi, Emiliano Iori, Mauro Fioroni, Federica Grassi, Elisa |
author_sort | Finocchiaro, Domenico |
collection | PubMed |
description | AIM: The present work concerns the comparison of the performances of three systems for dosimetry in RPT that use different techniques for absorbed dose calculation (organ-level dosimetry, voxel-level dose kernel convolution and Monte Carlo simulations). The aim was to assess the importance of the choice of the most adequate calculation modality, providing recommendations about the choice of the computation tool. METHODS: The performances were evaluated both on phantoms and patients in a multi-level approach. Different phantoms filled with a (177)Lu-radioactive solution were used: a homogeneous cylindrical phantom, a phantom with organ-shaped inserts and two cylindrical phantoms with inserts different for shape and volume. A total of 70 patients with NETs treated by PRRT with (177)Lu-DOTATOC were retrospectively analysed. RESULTS: The comparisons were performed mainly between the mean values of the absorbed dose in the regions of interest. A general better agreement was obtained between Dose kernel convolution and Monte Carlo simulations results rather than between either of these two and organ-level dosimetry, both for phantoms and patients. Phantoms measurements also showed the discrepancies mainly depend on the geometry of the inserts (e.g. shape and volume). For patients, differences were more pronounced than phantoms and higher inter/intra patient variability was observed. CONCLUSION: This study suggests that voxel-level techniques for dosimetry calculation are potentially more accurate and personalized than organ-level methods. In particular, a voxel-convolution method provides good results in a short time of calculation, while Monte Carlo based computation should be conducted with very fast calculation systems for a possible use in clinics, despite its intrinsic higher accuracy. Attention to the calculation modality is recommended in case of clinical regions of interest with irregular shape and far from spherical geometry, in which Monte Carlo seems to be more accurate than voxel-convolution methods. |
format | Online Article Text |
id | pubmed-7413508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74135082020-08-13 Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy Finocchiaro, Domenico Berenato, Salvatore Bertolini, Valentina Castellani, Gastone Lanconelli, Nico Versari, Annibale Spezi, Emiliano Iori, Mauro Fioroni, Federica Grassi, Elisa PLoS One Research Article AIM: The present work concerns the comparison of the performances of three systems for dosimetry in RPT that use different techniques for absorbed dose calculation (organ-level dosimetry, voxel-level dose kernel convolution and Monte Carlo simulations). The aim was to assess the importance of the choice of the most adequate calculation modality, providing recommendations about the choice of the computation tool. METHODS: The performances were evaluated both on phantoms and patients in a multi-level approach. Different phantoms filled with a (177)Lu-radioactive solution were used: a homogeneous cylindrical phantom, a phantom with organ-shaped inserts and two cylindrical phantoms with inserts different for shape and volume. A total of 70 patients with NETs treated by PRRT with (177)Lu-DOTATOC were retrospectively analysed. RESULTS: The comparisons were performed mainly between the mean values of the absorbed dose in the regions of interest. A general better agreement was obtained between Dose kernel convolution and Monte Carlo simulations results rather than between either of these two and organ-level dosimetry, both for phantoms and patients. Phantoms measurements also showed the discrepancies mainly depend on the geometry of the inserts (e.g. shape and volume). For patients, differences were more pronounced than phantoms and higher inter/intra patient variability was observed. CONCLUSION: This study suggests that voxel-level techniques for dosimetry calculation are potentially more accurate and personalized than organ-level methods. In particular, a voxel-convolution method provides good results in a short time of calculation, while Monte Carlo based computation should be conducted with very fast calculation systems for a possible use in clinics, despite its intrinsic higher accuracy. Attention to the calculation modality is recommended in case of clinical regions of interest with irregular shape and far from spherical geometry, in which Monte Carlo seems to be more accurate than voxel-convolution methods. Public Library of Science 2020-08-07 /pmc/articles/PMC7413508/ /pubmed/32764764 http://dx.doi.org/10.1371/journal.pone.0236466 Text en © 2020 Finocchiaro et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Finocchiaro, Domenico Berenato, Salvatore Bertolini, Valentina Castellani, Gastone Lanconelli, Nico Versari, Annibale Spezi, Emiliano Iori, Mauro Fioroni, Federica Grassi, Elisa Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title | Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title_full | Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title_fullStr | Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title_full_unstemmed | Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title_short | Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
title_sort | comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413508/ https://www.ncbi.nlm.nih.gov/pubmed/32764764 http://dx.doi.org/10.1371/journal.pone.0236466 |
work_keys_str_mv | AT finocchiarodomenico comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT berenatosalvatore comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT bertolinivalentina comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT castellanigastone comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT lanconellinico comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT versariannibale comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT speziemiliano comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT iorimauro comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT fioronifederica comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy AT grassielisa comparisonofdifferentcalculationtechniquesforabsorbeddoseassessmentinpatientspecificpeptidereceptorradionuclidetherapy |