Cargando…
Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada
Statistical modeling is commonly used to relate the performance of potato (Solanum tuberosum L.) to fertilizer requirements. Prescribing optimal nutrient doses is challenging because of the involvement of many variables including weather, soils, land management, genotypes, and severity of pests and...
Autores principales: | Coulibali, Zonlehoua, Cambouris, Athyna Nancy, Parent, Serge-Étienne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413527/ https://www.ncbi.nlm.nih.gov/pubmed/32764750 http://dx.doi.org/10.1371/journal.pone.0230888 |
Ejemplares similares
-
Cultivar-specific nutritional status of potato (Solanum tuberosum L.) crops
por: Coulibali, Zonlehoua, et al.
Publicado: (2020) -
Assessment of soil fertility and potato crop nutrient status in central and eastern highlands of Kenya
por: Mugo, James. N., et al.
Publicado: (2020) -
Using a soil bacterial species balance index to estimate potato crop productivity
por: Jeanne, Thomas, et al.
Publicado: (2019) -
Conditioning Machine Learning Models to Adjust Lowbush Blueberry Crop Management to the Local Agroecosystem
por: Parent, Serge-Étienne, et al.
Publicado: (2020) -
Improving Soil Quality and Potato Productivity with Manure and High-Residue Cover Crops in Eastern Canada
por: Nyiraneza, Judith, et al.
Publicado: (2021)