Cargando…

Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach

Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS(2) synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopa...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Yu, Butler, Derrick, Lucking, Michael C., Zhang, Fu, Xia, Tunan, Fujisawa, Kazunori, Granzier-Nakajima, Tomotaroh, Cruz-Silva, Rodolfo, Endo, Morinobu, Terrones, Humberto, Terrones, Mauricio, Ebrahimi, Aida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413726/
https://www.ncbi.nlm.nih.gov/pubmed/32821846
http://dx.doi.org/10.1126/sciadv.abc4250
_version_ 1783568850322718720
author Lei, Yu
Butler, Derrick
Lucking, Michael C.
Zhang, Fu
Xia, Tunan
Fujisawa, Kazunori
Granzier-Nakajima, Tomotaroh
Cruz-Silva, Rodolfo
Endo, Morinobu
Terrones, Humberto
Terrones, Mauricio
Ebrahimi, Aida
author_facet Lei, Yu
Butler, Derrick
Lucking, Michael C.
Zhang, Fu
Xia, Tunan
Fujisawa, Kazunori
Granzier-Nakajima, Tomotaroh
Cruz-Silva, Rodolfo
Endo, Morinobu
Terrones, Humberto
Terrones, Mauricio
Ebrahimi, Aida
author_sort Lei, Yu
collection PubMed
description Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS(2) synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (Mn(topMo)) and Mn substituting a Mo atom (Mn(Mo)). At low dopamine concentrations, physisorption on Mn(Mo) dominates. At higher concentrations, dopamine chemisorbs on Mn(topMo), which is consistent with calculations of the dopamine binding energy (2.91 eV for Mn(topMo) versus 0.65 eV for Mn(Mo)). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors.
format Online
Article
Text
id pubmed-7413726
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-74137262020-08-19 Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach Lei, Yu Butler, Derrick Lucking, Michael C. Zhang, Fu Xia, Tunan Fujisawa, Kazunori Granzier-Nakajima, Tomotaroh Cruz-Silva, Rodolfo Endo, Morinobu Terrones, Humberto Terrones, Mauricio Ebrahimi, Aida Sci Adv Research Articles Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS(2) synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (Mn(topMo)) and Mn substituting a Mo atom (Mn(Mo)). At low dopamine concentrations, physisorption on Mn(Mo) dominates. At higher concentrations, dopamine chemisorbs on Mn(topMo), which is consistent with calculations of the dopamine binding energy (2.91 eV for Mn(topMo) versus 0.65 eV for Mn(Mo)). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors. American Association for the Advancement of Science 2020-08-07 /pmc/articles/PMC7413726/ /pubmed/32821846 http://dx.doi.org/10.1126/sciadv.abc4250 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Lei, Yu
Butler, Derrick
Lucking, Michael C.
Zhang, Fu
Xia, Tunan
Fujisawa, Kazunori
Granzier-Nakajima, Tomotaroh
Cruz-Silva, Rodolfo
Endo, Morinobu
Terrones, Humberto
Terrones, Mauricio
Ebrahimi, Aida
Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title_full Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title_fullStr Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title_full_unstemmed Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title_short Single-atom doping of MoS(2) with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach
title_sort single-atom doping of mos(2) with manganese enables ultrasensitive detection of dopamine: experimental and computational approach
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413726/
https://www.ncbi.nlm.nih.gov/pubmed/32821846
http://dx.doi.org/10.1126/sciadv.abc4250
work_keys_str_mv AT leiyu singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT butlerderrick singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT luckingmichaelc singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT zhangfu singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT xiatunan singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT fujisawakazunori singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT granziernakajimatomotaroh singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT cruzsilvarodolfo singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT endomorinobu singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT terroneshumberto singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT terronesmauricio singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach
AT ebrahimiaida singleatomdopingofmos2withmanganeseenablesultrasensitivedetectionofdopamineexperimentalandcomputationalapproach