Cargando…

Hepcidin, Serum Iron, and Transferrin Saturation in Full-Term and Premature Infants during the First Month of Life: A State-of-the-Art Review of Existing Evidence in Humans

Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from 59 studies we...

Descripción completa

Detalles Bibliográficos
Autores principales: Cross, James H, Prentice, Andrew M, Cerami, Carla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413980/
https://www.ncbi.nlm.nih.gov/pubmed/32793848
http://dx.doi.org/10.1093/cdn/nzaa104
Descripción
Sumario:Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from 59 studies were used to create reference ranges for hepcidin, iron, and TSAT for full-term-birth (FTB) neonates over the first month of life. In FTB neonates, venous hepcidin increases 100% over the first month of life (to reach 61.1 ng/mL; 95% CI: 20.1, 102.0 ng/mL) compared with umbilical cord blood (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL). Cord blood has a high concentration of serum iron (28.4 μmol/L; 95% CI: 26.0, 31.1 μmol/L) and levels of TSAT (51.7%; 95% CI: 46.5%, 56.9%). After a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately half the levels in the cord by the end of the first month. There were insufficient data to formulate reference ranges for preterm neonates.