Cargando…

Nano-synthesis of solid acid catalysts from waste-iron-filling for biodiesel production using high free fatty acid waste cooking oil

Waste-iron-filling (WIF) served as a precursor to synthesize α-[Formula: see text] through the co-precipitation process. The α-[Formula: see text] was converted to solid acid catalysts of RBC500, RBC700, and RBC900 by calcination with temperatures of 500, 700 and 900 °C respectively and afterwards s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ajala, E. O., Ajala, M. A., Ayinla, I. K., Sonusi, A. D., Fanodun, S. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414043/
https://www.ncbi.nlm.nih.gov/pubmed/32764702
http://dx.doi.org/10.1038/s41598-020-70025-x
Descripción
Sumario:Waste-iron-filling (WIF) served as a precursor to synthesize α-[Formula: see text] through the co-precipitation process. The α-[Formula: see text] was converted to solid acid catalysts of RBC500, RBC700, and RBC900 by calcination with temperatures of 500, 700 and 900 °C respectively and afterwards sulfonated. Among the various techniques employed to characterize the catalysts is Fourier transforms infrared spectrometer (FT-IR), X-ray diffraction (XRD and Scanning electron microscopy (SEM). Performance of the catalysts was also investigated for biodiesel production using waste cooking oil (WCO) of 6.1% free fatty acid. The XRD reveals that each of the catalysts composed of Al–[Formula: see text] . While the FT-IR confirmed acid loading by the presence of [Formula: see text] groups. The RBC500, RBC700, and RBC900 possessed suitable morphology with an average particle size of 259.6, 169.5 and 95.62 nm respectively. The RBC500, RBC700, and RBC900 achieved biodiesel yield of 87, 90 and 92% respectively, at the process conditions of 3 h reaction time, 12:1 MeOH: WCO molar ratio, 6 wt% catalyst loading and 80 °C temperature. The catalysts showed the effectiveness and relative stability for WCO trans-esterification over 3 cycles. The novelty, therefore, is the synthesis of nano-solid acid catalyst from WIF, which is cheaper and could serve as an alternative source for the ferric compound.