Cargando…

Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam

In the present study piroxicam loaded starch nanoparticles were prepared to enhance the solubility of piroxicam by nanoprecipitation technique. The preparation of nanoparticles was carried out as per central composite experimental design protocol, having concentration of starch and drug as independe...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhatia, Meenakshi, Rohilla, Sulekha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414099/
https://www.ncbi.nlm.nih.gov/pubmed/32792837
http://dx.doi.org/10.1016/j.jsps.2020.06.013
Descripción
Sumario:In the present study piroxicam loaded starch nanoparticles were prepared to enhance the solubility of piroxicam by nanoprecipitation technique. The preparation of nanoparticles was carried out as per central composite experimental design protocol, having concentration of starch and drug as independent variables and particle size and polydispersity index (PdI) as dependent variables. The particle size and PdI of piroxicam loaded starch nanoparticles was found to be between 282–870 nm and 0.339–0.772, respectively. After the characterization by FT-IR, TGA, XRD and SEM studies, the optimized batch was evaluated for in-vitro release study, anti-inflammatory activity and anti-oxidant activity. The in-vitro anti-inflammatory activity of piroxicam loaded starch nanoparticles was found to be more than the pure drug piroxicam whereas the anti-oxidant activity of starch is found greater than starch nanoparticles. In-vitro release study showed 98.8% release in 2 h dissolution study following supercase II transport mechanism of drug release.