Cargando…
Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram
Prompt identification of acute coronary syndrome is a challenge in clinical practice. The 12-lead electrocardiogram (ECG) is readily available during initial patient evaluation, but current rule-based interpretation approaches lack sufficient accuracy. Here we report machine learning-based methods f...
Autores principales: | Al-Zaiti, Salah, Besomi, Lucas, Bouzid, Zeineb, Faramand, Ziad, Frisch, Stephanie, Martin-Gill, Christian, Gregg, Richard, Saba, Samir, Callaway, Clifton, Sejdić, Ervin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414145/ https://www.ncbi.nlm.nih.gov/pubmed/32769990 http://dx.doi.org/10.1038/s41467-020-17804-2 |
Ejemplares similares
-
In Search of an Optimal Subset of ECG Features to Augment the Diagnosis of Acute Coronary Syndrome at the Emergency Department
por: Bouzid, Zeineb, et al.
Publicado: (2021) -
Machine Learning for the ECG Diagnosis and Risk Stratification of Occlusion Myocardial Infarction at First Medical Contact
por: Al-Zaiti, Salah, et al.
Publicado: (2023) -
Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction
por: Al-Zaiti, Salah S., et al.
Publicado: (2023) -
A Novel Non-Invasive Assessment of Cardiac Hemodynamics in Patients With Heart Failure and Atrial Fibrillation
por: Khraim, Fadi, et al.
Publicado: (2020) -
Clinical Utility of Ventricular Repolarization Dispersion for Real-Time Detection of Non-ST Elevation Myocardial Infarction in Emergency Departments
por: Al-Zaiti, Salah S, et al.
Publicado: (2015)