Cargando…
Machine learning classification can reduce false positives in structure-based virtual screening
With the recent explosion in the size of libraries available for screening, virtual screening is positioned to assume a more prominent role in early drug discovery’s search for active chemical matter. In typical virtual screens, however, only about 12% of the top-scoring compounds actually show acti...
Autores principales: | Adeshina, Yusuf O., Deeds, Eric J., Karanicolas, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414157/ https://www.ncbi.nlm.nih.gov/pubmed/32669436 http://dx.doi.org/10.1073/pnas.2000585117 |
Ejemplares similares
-
Machine Learning Classification of False-Positive Human Immunodeficiency Virus Screening Results
por: Elkhadrawi, Mahmoud, et al.
Publicado: (2021) -
Reducing False-Positive Results in Newborn Screening Using Machine Learning
por: Peng, Gang, et al.
Publicado: (2020) -
Risk of breast cancer after false‐positive results in mammographic screening
por: Román, Marta, et al.
Publicado: (2016) -
Screening membraneless organelle participants with machine-learning models that integrate multimodal features
por: Chen, Zhaoming, et al.
Publicado: (2022) -
CARE 2.0: reducing false-positive sequencing error corrections using machine learning
por: Kallenborn, Felix, et al.
Publicado: (2022)