Cargando…
Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data
This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca. 3300 to 1500...
Autores principales: | Orengo, Hector A., Conesa, Francesc C., Garcia-Molsosa, Arnau, Lobo, Agustín, Green, Adam S., Madella, Marco, Petrie, Cameron A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414161/ https://www.ncbi.nlm.nih.gov/pubmed/32690717 http://dx.doi.org/10.1073/pnas.2005583117 |
Ejemplares similares
-
Potential of deep learning segmentation for the extraction of archaeological features from historical map series
por: Garcia‐Molsosa, Arnau, et al.
Publicado: (2021) -
Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan
por: Berganzo-Besga, Iban, et al.
Publicado: (2023) -
Relaxation-Based Radiometric Normalization for Multitemporal Cross-Sensor Satellite Images
por: Ryadi, Gabriel Yedaya Immanuel, et al.
Publicado: (2023) -
Application of Multitemporal Change Detection in Radar Satellite Imagery Using REACTIV-Based Method for Geospatial Intelligence
por: Slesinski, Jakub, et al.
Publicado: (2023) -
Multitemporal remote sensing: methods and applications
por: Ban, Yifang
Publicado: (2016)