Cargando…
Subdomain cryo-EM structure of nodaviral replication protein A crown complex provides mechanistic insights into RNA genome replication
For positive-strand RNA [(+)RNA] viruses, the major target for antiviral therapies is genomic RNA replication, which occurs at poorly understood membrane-bound viral RNA replication complexes. Recent cryoelectron microscopy (cryo-EM) of nodavirus RNA replication complexes revealed that the viral dou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414174/ https://www.ncbi.nlm.nih.gov/pubmed/32690711 http://dx.doi.org/10.1073/pnas.2006165117 |
Sumario: | For positive-strand RNA [(+)RNA] viruses, the major target for antiviral therapies is genomic RNA replication, which occurs at poorly understood membrane-bound viral RNA replication complexes. Recent cryoelectron microscopy (cryo-EM) of nodavirus RNA replication complexes revealed that the viral double-stranded RNA replication template is coiled inside a 30- to 90-nm invagination of the outer mitochondrial membrane, whose necked aperture to the cytoplasm is gated by a 12-fold symmetric, 35-nm diameter “crown” complex that contains multifunctional viral RNA replication protein A. Here we report optimizing cryo-EM tomography and image processing to improve crown resolution from 33 to 8.5 Å. This resolves the crown into 12 distinct vertical segments, each with 3 major subdomains: A membrane-connected basal lobe and an apical lobe that together comprise the ∼19-nm-diameter central turret, and a leg emerging from the basal lobe that connects to the membrane at ∼35-nm diameter. Despite widely varying replication vesicle diameters, the resulting two rings of membrane interaction sites constrain the vesicle neck to a highly uniform shape. Labeling protein A with a His-tag that binds 5-nm Ni-nanogold allowed cryo-EM tomography mapping of the C terminus of protein A to the apical lobe, which correlates well with the predicted structure of the C-proximal polymerase domain of protein A. These and other results indicate that the crown contains 12 copies of protein A arranged basally to apically in an N-to-C orientation. Moreover, the apical polymerase localization has significant mechanistic implications for template RNA recruitment and (−) and (+)RNA synthesis. |
---|