Cargando…
Construction of gateway-compatible baculovirus expression vectors for high-throughput protein expression and in vivo microcrystal screening
Baculovirus mediated-insect cell expression systems have been widely used for producing heterogeneous proteins. However, to date, there is still the lack of an easy-to-manipulate system that enables the high-throughput protein characterization in insect cells by taking advantage of large existing Ga...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414197/ https://www.ncbi.nlm.nih.gov/pubmed/32770037 http://dx.doi.org/10.1038/s41598-020-70163-2 |
Sumario: | Baculovirus mediated-insect cell expression systems have been widely used for producing heterogeneous proteins. However, to date, there is still the lack of an easy-to-manipulate system that enables the high-throughput protein characterization in insect cells by taking advantage of large existing Gateway clone libraries. To resolve this limitation, we have constructed a suite of Gateway-compatible pIEx-derived baculovirus expression vectors that allow the rapid and cost-effective construction of expression clones for mass parallel protein expression in insect cells. This vector collection also supports the attachment of a variety of fusion tags to target proteins to meet the needs for different research applications. We first demonstrated the utility of these vectors for protein expression and purification using a set of 40 target proteins of various sizes, cellular localizations and host organisms. We then established a scalable pipeline coupled with the SONICC and TEM techniques to screen for microcrystal formation within living insect cells. Using this pipeline, we successfully identified microcrystals for ~ 16% of the tested protein set, which can be potentially used for structure elucidation by X-ray crystallography. In summary, we have established a versatile pipeline enabling parallel gene cloning, protein expression and purification, and in vivo microcrystal screening for structural studies. |
---|