Cargando…
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
The continuously growing amount of seismic data collected worldwide is outpacing our abilities for analysis, since to date, such datasets have been analyzed in a human-expert-intensive, supervised fashion. Moreover, analyses that are conducted can be strongly biased by the standard models employed b...
Autores principales: | Seydoux, Léonard, Balestriero, Randall, Poli, Piero, Hoop, Maarten de, Campillo, Michel, Baraniuk, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414231/ https://www.ncbi.nlm.nih.gov/pubmed/32769972 http://dx.doi.org/10.1038/s41467-020-17841-x |
Ejemplares similares
-
Hierarchical Exploration of Continuous Seismograms With Unsupervised Learning
por: Steinmann, René, et al.
Publicado: (2022) -
Seismic Site Characterization Using Ambient Noise and Earthquake HVSR in the Easternmost Part of Shillong Plateau, India
por: Vijayan, Athira, et al.
Publicado: (2022) -
Evaluating supervised and unsupervised background noise correction in human gut microbiome data
por: Briscoe, Leah, et al.
Publicado: (2022) -
Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool
por: Celecia, Alimed, et al.
Publicado: (2021) -
Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap
por: Plata-Martinez, R., et al.
Publicado: (2021)