Cargando…
Identification of risk factors for involuntary psychiatric hospitalization: using environmental socioeconomic data and methods of machine learning to improve prediction
BACKGROUND: The purpose of this study was to identify factors associated with a high risk of involuntary psychiatric in-patient hospitalization both on the individual level and on the level of mental health services and the socioeconomic environment that patients live in. METHODS: The present study...
Autores principales: | Karasch, O., Schmitz-Buhl, M., Mennicken, R., Zielasek, J., Gouzoulis-Mayfrank, E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414567/ https://www.ncbi.nlm.nih.gov/pubmed/32770970 http://dx.doi.org/10.1186/s12888-020-02803-w |
Ejemplares similares
-
A retrospective analysis of determinants of involuntary psychiatric in-patient treatment
por: Schmitz-Buhl, Mario, et al.
Publicado: (2019) -
Determinants of compulsory hospitalisation at admission and in the course of inpatient treatment in people with mental disorders—a retrospective analysis of health records of the four psychiatric hospitals of the city of Cologne
por: Peters, Sönke Johann, et al.
Publicado: (2022) -
Utilization of Inpatient Mental Health Care in the Rhineland During the COVID-19 Pandemic
por: Zielasek, Jürgen, et al.
Publicado: (2021) -
Homelessness among psychiatric inpatients in North Rhine-Westphalia: a retrospective routine data analysis
por: Haussleiter, Ida Sibylle, et al.
Publicado: (2022) -
Adapting and Implementing Apps for Mental Healthcare
por: Zielasek, Jürgen, et al.
Publicado: (2022)