Cargando…
Automated Recognition of Retinal Pigment Epithelium Cells on Limited Training Samples Using Neural Networks
PURPOSE: To develop a neural network (NN)–based approach, with limited training resources, that identifies and counts the number of retinal pigment epithelium (RPE) cells in confocal microscopy images obtained from cell culture or mice RPE/choroid flat-mounts. METHODS: Training and testing dataset c...
Autores principales: | Gao, Qitong, Xu, Ying, Amason, Joshua, Loksztejn, Anna, Cousins, Scott, Pajic, Miroslav, Hadziahmetovic, Majda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414692/ https://www.ncbi.nlm.nih.gov/pubmed/32832204 http://dx.doi.org/10.1167/tvst.9.2.31 |
Ejemplares similares
-
Automated Identification of Referable Retinal Pathology in Teleophthalmology Setting
por: Gao, Qitong, et al.
Publicado: (2021) -
Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration
por: Curcio, Christine A., et al.
Publicado: (2017) -
Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling
por: Kwon, Whijin, et al.
Publicado: (2020) -
Selective Large-Area Retinal Pigment Epithelial Removal by Microsecond Laser in Preparation for Cell Therapy
por: Burri, Christian, et al.
Publicado: (2021) -
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning
por: Guo, Yukun, et al.
Publicado: (2020)