Cargando…
Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks
PURPOSE: Introducing a new technique to improve deep learning (DL) models designed for automatic grading of diabetic retinopathy (DR) from retinal fundus images by enhancing predictions’ consistency. METHODS: A convolutional neural network (CNN) was optimized in three different manners to predict DR...
Autores principales: | Galdran, Adrian, Chelbi, Jihed, Kobi, Riadh, Dolz, José, Lombaert, Hervé, ben Ayed, Ismail, Chakor, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414697/ https://www.ncbi.nlm.nih.gov/pubmed/32832207 http://dx.doi.org/10.1167/tvst.9.2.34 |
Ejemplares similares
-
State-of-the-art retinal vessel segmentation with minimalistic models
por: Galdran, Adrian, et al.
Publicado: (2022) -
Author Correction: State-of-the-art retinal vessel segmentation with minimalistic models
por: Galdran, Adrian, et al.
Publicado: (2023) -
Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images
por: Phan, Thanh Vân, et al.
Publicado: (2016) -
Rapid Grading of Fundus Photographs for Diabetic Retinopathy Using Crowdsourcing
por: Brady, Christopher J, et al.
Publicado: (2014) -
Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy
por: Rasta, Seyed Hossein, et al.
Publicado: (2015)