Cargando…

Site-specific electrical contacts with the two-dimensional materials

Electrical contact is an essential issue for all devices. Although the contacts of the emergent two-dimensional materials have been extensively investigated, it is still challenging to produce excellent contacts. The face and edge type contacts have been applied previously, however a comparative stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Lok-Wing, Huang, Lingli, Zheng, Fangyuan, Thi, Quoc Huy, Zhao, Jiong, Deng, Qingming, Ly, Thuc Hue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414847/
https://www.ncbi.nlm.nih.gov/pubmed/32770067
http://dx.doi.org/10.1038/s41467-020-17784-3
Descripción
Sumario:Electrical contact is an essential issue for all devices. Although the contacts of the emergent two-dimensional materials have been extensively investigated, it is still challenging to produce excellent contacts. The face and edge type contacts have been applied previously, however a comparative study on the site-specific contact performances is lacking. Here we report an in situ transmission electron microscopy study on the contact properties with a series of 2D materials. By manipulating the contact configurations in real time, it is confirmed that, for 2D semiconductors the vdW type face contacts exhibit superior conductivity compared with the non-vdW type contacts. The direct quantum tunneling across the vdW bonded interfaces are virtually more favorable than the Fowler–Nordheim tunneling across chemically bonded interfaces for contacts. Meanwhile, remarkable area, thickness, geometry, and defect site dependences are revealed. Our work sheds light on the significance of contact engineering for 2D materials in future applications.