Cargando…
Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media
Fine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids...
Autores principales: | Lubbers, Nicholas, Agarwal, Animesh, Chen, Yu, Son, Soyoun, Mehana, Mohamed, Kang, Qinjun, Karra, Satish, Junghans, Christoph, Germann, Timothy C., Viswanathan, Hari S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414857/ https://www.ncbi.nlm.nih.gov/pubmed/32770012 http://dx.doi.org/10.1038/s41598-020-69661-0 |
Ejemplares similares
-
Predictive scale-bridging simulations through active learning
por: Karra, Satish, et al.
Publicado: (2023) -
A Dataset of 3D Structural and Simulated Transport Properties of Complex Porous Media
por: Santos, Javier E., et al.
Publicado: (2022) -
Chemistry in nanoconfined water
por: Muñoz-Santiburcio, Daniel, et al.
Publicado: (2017) -
Isomorphs in nanoconfined liquids
por: Carter, Benjamin M. G. D., et al.
Publicado: (2021) -
The Influence of Nanoconfinement on Electrocatalysis
por: Wordsworth, Johanna, et al.
Publicado: (2022)