Cargando…
Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams
This study investigates the photon production from thermal neutron capture in a gadolinium (Gd) infused tumor as a result of secondary neutrons from particle therapy. Gadolinium contrast agents used in MRI are distributed within the tumor volume and can act as neutron capture agents. As a result of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414875/ https://www.ncbi.nlm.nih.gov/pubmed/32770174 http://dx.doi.org/10.1038/s41598-020-70429-9 |
Sumario: | This study investigates the photon production from thermal neutron capture in a gadolinium (Gd) infused tumor as a result of secondary neutrons from particle therapy. Gadolinium contrast agents used in MRI are distributed within the tumor volume and can act as neutron capture agents. As a result of particle therapy, secondary neutrons are produced and absorbed by Gd in the tumor providing potential enhanced localized dose in addition to a signature photon spectrum that can be used to produce an image of the Gd enriched tumor. To investigate this imaging application, Monte Carlo (MC) simulations were performed for 10 different particles using a 5–10 cm spread out-Bragg peak (SOBP) centered on an 8 cm(3), 3 mg/g Gd infused tumor. For a proton beam, 1.9 × 10(6) neutron captures per RBE weighted Gray Equivalent dose (GyE) occurred within the Gd tumor region. Antiprotons ([Formula: see text] ), negative pions (− π), and helium (He) ion beams resulted in 10, 17 and 1.3 times larger Gd neutron captures per GyE than protons, respectively. Therefore, the characteristic photon based spectroscopic imaging and secondary Gd dose enhancement could be viable and likely beneficial for these three particles. |
---|