Cargando…
Symbiotic cooperation between freshwater rock-boring bivalves and microorganisms promotes silicate bioerosion
Bioerosion is a process with a high socio-economic impact that contributes to coastal retreat, and likely to increase with climate change. Whereas limestone bioerosion is well explained by a combination of mechanical and chemical pathways, the bioerosion mechanisms of silicates, which are harder and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415154/ https://www.ncbi.nlm.nih.gov/pubmed/32770130 http://dx.doi.org/10.1038/s41598-020-70265-x |
Sumario: | Bioerosion is a process with a high socio-economic impact that contributes to coastal retreat, and likely to increase with climate change. Whereas limestone bioerosion is well explained by a combination of mechanical and chemical pathways, the bioerosion mechanisms of silicates, which are harder and chemically more resistant, remain elusive. Here we investigated the interface between siltstone and freshwater rock-boring bivalves Lignopholas fluminalis (Bivalvia: Pholadidae). Remains of a microbial biofilm were observed only in the poorly consolidated part of the rock within the macroborings created by bivalves. Secondary Mn-bearing minerals identified in the biofilm suggest that microbes promoted silicate rock weathering by dissolving Mn-rich chlorites. Moreover, hard mineral debris found in a biofilm attached to the shells likely contributed to the abrasion of the rock substrate. Thus, beyond the classical view of chemical and/or mechanical action(s) of macroborers, silicate bioerosion may also be facilitated by an unexpected synergistic association between macro- and microorganisms. |
---|