Cargando…
Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking
Earthquake signal detection and seismic phase picking are challenging tasks in the processing of noisy data and the monitoring of microearthquakes. Here we present a global deep-learning model for simultaneous earthquake detection and phase picking. Performing these two related tasks in tandem impro...
Autores principales: | Mousavi, S. Mostafa, Ellsworth, William L., Zhu, Weiqiang, Chuang, Lindsay Y., Beroza, Gregory C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415159/ https://www.ncbi.nlm.nih.gov/pubmed/32770023 http://dx.doi.org/10.1038/s41467-020-17591-w |
Ejemplares similares
-
CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection
por: Mousavi, S. Mostafa, et al.
Publicado: (2019) -
Machine learning and earthquake forecasting—next steps
por: Beroza, Gregory C., et al.
Publicado: (2021) -
Toward improved urban earthquake monitoring through deep-learning-based noise suppression
por: Yang, Lei, et al.
Publicado: (2022) -
Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable
por: Huang, Yihe, et al.
Publicado: (2017) -
Earthquake detection through computationally efficient similarity search
por: Yoon, Clara E., et al.
Publicado: (2015)