Cargando…
Nanomaterial assisted bulk scale synthesis of 2-methyl-6-nitroquinoline
Quinolines are an interesting class of moieties with various medicinal chemistry uses. The most prominent is their ability to be used as the last line of therapy for bacterial and viral infections including recent COVID-19. The synthesis of quinoline is through a cyclization reaction and overall rea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415172/ https://www.ncbi.nlm.nih.gov/pubmed/32837922 http://dx.doi.org/10.1016/j.matpr.2020.07.103 |
Sumario: | Quinolines are an interesting class of moieties with various medicinal chemistry uses. The most prominent is their ability to be used as the last line of therapy for bacterial and viral infections including recent COVID-19. The synthesis of quinoline is through a cyclization reaction and overall reaction yields are about 20%. The bulky ring and the associated crowding of functional groups limit the catalyst options. In this publication, the use of Fe(3)O(4)@SiO(2) for enhancing yield improvements, especially for heterocyclics is reported. The use of the 40 nm sized silica functionalized magnetite nanoparticles seems to help in both condensation and cyclization steps of representative 2-methyl-6-nitroquinoline. Reaction time reduction due to surface enabled catalysis of nanoparticles is 110 min to 80 min. The reaction yield has doubled due to the presence of catalyst and the mechanism suggests this drastic result is due to stabilization of unstable intermediate on the acidic surface of the silica coating. This near homogeneous catalysis of 40 nm sized, silica functionalized, magnetite nanoparticles have far reaching applications in bulk drug industry for drugs like chloroquine & hydroxychloroquine, the two essential drugs for prophylactic use for COVID-1. |
---|