Cargando…
Downregulation of MST4 Underlies a Novel Inhibitory Role of MicroRNA Let-7a in the Progression of Retinoblastoma
PURPOSE: Retinoblastoma (RB) is the most common intraocular malignancy in children. Deregulation of several microRNAs (miRNAs) has been identified in RB. However, the specific effect of let-7a on RB remains unclear. The present study aims to explore the effect of let-7a on malignant biological behav...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415300/ https://www.ncbi.nlm.nih.gov/pubmed/32539131 http://dx.doi.org/10.1167/iovs.61.6.28 |
Sumario: | PURPOSE: Retinoblastoma (RB) is the most common intraocular malignancy in children. Deregulation of several microRNAs (miRNAs) has been identified in RB. However, the specific effect of let-7a on RB remains unclear. The present study aims to explore the effect of let-7a on malignant biological behaviors of RB cells and angiogenesis in RB. METHODS: The expressions of let-7a and mammalian sterile-20 like kinase 4 (MST4) in RB were determined with the use of real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Next, in order to explore effects of let-7a and MST4 on RB cellular functions, RB cells were transfected with let-7a-mimic, let-7a inhibitor, si-MST4, or co-transfected with let-7a-mimic and oe-MST4 plasmids. Subsequently, the interaction among let-7a, MST4, and the MAPK signaling pathway was evaluated by RT-qPCR, dual-luciferase reporter gene assay, and Western blot analysis. Finally, the effects of let-7a and MST4 were further confirmed in vivo by injecting nude mice with RB cells stably expressing let-7a agomir or sh-MST4. RESULTS: Rb tissues and cells presented with downregulated Let-7a and upregulated MST4. Let-7a negatively targeted MST4 to block the activation of the MAPK signaling pathway. Upregulation of let-7a promoted apoptosis, and facilitated proliferation, angiogenesis, migration, and invasion of RB cells by decreasing MST4. Elevation of let-7a or silencing MST4 restricted angiogenesis and tumorigenesis in RB mice. CONCLUSIONS: Taken together, let-7a inhibits angiogenesis in RB by silencing MST4 and inhibiting the MAPK signaling pathway. |
---|