Cargando…
Fish growth enhances microbial sulfur cycling in aquaculture pond sediments
Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate‐reducing bacteria (SRB) and sulfur‐oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood i...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415356/ https://www.ncbi.nlm.nih.gov/pubmed/32940416 http://dx.doi.org/10.1111/1751-7915.13622 |
Sumario: | Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate‐reducing bacteria (SRB) and sulfur‐oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood in aquaculture ponds, which received mounting of organic matter. In this study, bacterial communities, SRB and SOB from sediments of aquaculture ponds with different sizes of grass carp (Ctenopharyngodon idellus) were analysed using high‐throughput sequencing and quantitative real‐time PCR (qPCR). The results indicated that microbial communities in aquaculture pond sediments of large juvenile fish showed the highest richness and abundance of SRB and SOB, potentially further enhancing microbial sulfur cycling. Specifically, SRB were dominated by Desulfobulbus and Desulfovibrio, whereas SOB were dominated by Dechloromonas and Leptothrix. Although large juvenile fish ponds had relatively lower concentrations of sulfur compounds (i.e. total sulfur, acid‐volatile sulfide and elemental sulfur) than those of larval fish ponds, more abundant SRB and SOB were found in the large juvenile fish ponds. Further redundancy analysis (RDA) and linear regression indicated that sulfur compounds and sediment suspension are the major environmental factors shaping the abundance and community structure of SRB and SOB in aquaculture pond sediments. Findings of this study expand our current understanding of microbial driving sulfur cycling in aquaculture ecosystems and also provide novel insights for ecological and green aquaculture managements. |
---|