Cargando…

Enhancing astaxanthin accumulation in Xanthophyllomyces dendrorhous by a phytohormone: metabolomic and gene expression profiles

Xanthophyllomyces dendrorhous is a promising source of natural astaxanthin due to its ability to accumulate high amounts of astaxanthin. This study showed that 6‐benzylaminopurine (6‐BAP) is an effective substrate that enhances cell biomass and astaxanthin accumulation in X. dendrorhous. In the curr...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Xueshan, Wang, Baobei, Duan, Ran, Jia, Jing, Li, Jun, Xiong, Weide, Ling, Xueping, Chen, Cuixue, Huang, Xiaohong, Zhang, Guoliang, Lu, Yinghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415379/
https://www.ncbi.nlm.nih.gov/pubmed/32426951
http://dx.doi.org/10.1111/1751-7915.13567
Descripción
Sumario:Xanthophyllomyces dendrorhous is a promising source of natural astaxanthin due to its ability to accumulate high amounts of astaxanthin. This study showed that 6‐benzylaminopurine (6‐BAP) is an effective substrate that enhances cell biomass and astaxanthin accumulation in X. dendrorhous. In the current study, the biomass and astaxanthin content in X. dendrorhous were determined to be improved by 21.98% and 24.20%, respectively, induced by 6‐BAP treatments. To further understand the metabolic responses of X. dendrorhous to 6‐BAP, time‐course metabolomics and gene expression levels of X. dendrorhous cultures with and without 6‐BAP feeding were investigated. Metabolome analysis revealed that 6‐BAP facilitated glucose consumption, promoted the glycolysis, suppressed the TCA cycle, drove carbon flux of acetyl‐CoA into fatty acid and mevalonate biosynthesis, and finally facilitated the formation of astaxanthin. ROS analysis suggested that the antioxidant mechanism in X. dendrorhous can be induced by 6‐BAP. Additionally, the process of 6‐BAP significantly upregulated the expression of six key genes involved in pathways related to astaxanthin biosynthesis. This research demonstrates the metabolomic mechanism of phytohormone stimulation of astaxanthin production iNn X. dendrorhous and presents a new strategy to improve astaxanthin production to prevent the dilemma of choosing between accumulation of astaxanthin and cell biomass.