Cargando…

LncRNA MAFG-AS1 Accelerates Cell Migration, Invasion and Aerobic Glycolysis of Esophageal Squamous Cell Carcinoma Cells via miR-765/PDX1 Axis

BACKGROUND: LncRNA dysregulation is implicated in esophageal squamous cell carcinoma (ESCC) progression; However, the precise role and function of lncRNA MAFG-AS1 in ESCC remains unknown. MATERIALS AND METHODS: Expressions of MAFG-AS1, miR-765, PDX1, GLUT1 and LDH-A were detected via qRT-PCR or/and...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Cui-juan, Xu, Zhu-rong, Chen, Lu-yan, Wang, Yi-chao, Yao, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415466/
https://www.ncbi.nlm.nih.gov/pubmed/32801913
http://dx.doi.org/10.2147/CMAR.S262075
Descripción
Sumario:BACKGROUND: LncRNA dysregulation is implicated in esophageal squamous cell carcinoma (ESCC) progression; However, the precise role and function of lncRNA MAFG-AS1 in ESCC remains unknown. MATERIALS AND METHODS: Expressions of MAFG-AS1, miR-765, PDX1, GLUT1 and LDH-A were detected via qRT-PCR or/and Western blot in ESCC tissues and cell lines. CCK-8, transwell and glycolysis assays were used to investigate the effects of MAFG-AS1 on ESCC cell proliferation, migration, invasion and aerobic glycolysis after knockdown or overexpression of MAFG-AS1, and bioinformatics analyses, RNA pull-down and dual luciferase reporter systems were applied to investigate the interaction between MAFG-AS1, miR-765 and PDX1. RESULTS: MAFG-AS1 was significantly up-modulated in ESCC tissues and cell lines. MAFG-AS1 significantly accelerated ESCC cell proliferation, migration, invasion and aerobic glycolysis. MAFG-AS1 competitively adsorbed miR-765, while miR-765 negatively modulated the expression of PDX1. miR-765 and PDX1 participated in the promotive effects of MAFG-AS1 on cell migration, invasion and aerobic glycolysis in ESCC cells. CONCLUSION: Our research indicates that the MAFG-AS1/miR-765/PDX1 axis accelerates ESCC cell proliferation, migration, invasion and aerobic glycolysis.