Cargando…
Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years
The development of automated tools for brain morphometric analysis in infants has lagged significantly behind analogous tools for adults. This gap reflects the greater challenges in this domain due to: 1) a smaller-scaled region of interest, 2) increased motion corruption, 3) regional changes in geo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415702/ https://www.ncbi.nlm.nih.gov/pubmed/32442637 http://dx.doi.org/10.1016/j.neuroimage.2020.116946 |
_version_ | 1783569190192414720 |
---|---|
author | Zöllei, Lilla Iglesias, Juan Eugenio Ou, Yangming Grant, P. Ellen Fischl, Bruce |
author_facet | Zöllei, Lilla Iglesias, Juan Eugenio Ou, Yangming Grant, P. Ellen Fischl, Bruce |
author_sort | Zöllei, Lilla |
collection | PubMed |
description | The development of automated tools for brain morphometric analysis in infants has lagged significantly behind analogous tools for adults. This gap reflects the greater challenges in this domain due to: 1) a smaller-scaled region of interest, 2) increased motion corruption, 3) regional changes in geometry due to heterochronous growth, and 4) regional variations in contrast properties corresponding to ongoing myelination and other maturation processes. Nevertheless, there is a great need for automated image-processing tools to quantify differences between infant groups and other individuals, because aberrant cortical morphologic measurements (including volume, thickness, surface area, and curvature) have been associated with neuropsychiatric, neurologic, and developmental disorders in children. In this paper we present an automated segmentation and surface extraction pipeline designed to accommodate clinical MRI studies of infant brains in a population 0-2 year-olds. The algorithm relies on a single channel of T1-weighted MR images to achieve automated segmentation of cortical and subcortical brain areas, producing volumes of subcortical structures and surface models of the cerebral cortex. We evaluated the algorithm both qualitatively and quantitatively using manually labeled datasets, relevant comparator software solutions cited in the literature, and expert evaluations. The computational tools and atlases described in this paper will be distributed to the research community as part of the FreeSurfer image analysis package. |
format | Online Article Text |
id | pubmed-7415702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-74157022021-09-01 Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years Zöllei, Lilla Iglesias, Juan Eugenio Ou, Yangming Grant, P. Ellen Fischl, Bruce Neuroimage Article The development of automated tools for brain morphometric analysis in infants has lagged significantly behind analogous tools for adults. This gap reflects the greater challenges in this domain due to: 1) a smaller-scaled region of interest, 2) increased motion corruption, 3) regional changes in geometry due to heterochronous growth, and 4) regional variations in contrast properties corresponding to ongoing myelination and other maturation processes. Nevertheless, there is a great need for automated image-processing tools to quantify differences between infant groups and other individuals, because aberrant cortical morphologic measurements (including volume, thickness, surface area, and curvature) have been associated with neuropsychiatric, neurologic, and developmental disorders in children. In this paper we present an automated segmentation and surface extraction pipeline designed to accommodate clinical MRI studies of infant brains in a population 0-2 year-olds. The algorithm relies on a single channel of T1-weighted MR images to achieve automated segmentation of cortical and subcortical brain areas, producing volumes of subcortical structures and surface models of the cerebral cortex. We evaluated the algorithm both qualitatively and quantitatively using manually labeled datasets, relevant comparator software solutions cited in the literature, and expert evaluations. The computational tools and atlases described in this paper will be distributed to the research community as part of the FreeSurfer image analysis package. 2020-05-20 2020-09 /pmc/articles/PMC7415702/ /pubmed/32442637 http://dx.doi.org/10.1016/j.neuroimage.2020.116946 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zöllei, Lilla Iglesias, Juan Eugenio Ou, Yangming Grant, P. Ellen Fischl, Bruce Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title | Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title_full | Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title_fullStr | Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title_full_unstemmed | Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title_short | Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years |
title_sort | infant freesurfer: an automated segmentation and surface extraction pipeline for t1-weighted neuroimaging data of infants 0–2 years |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415702/ https://www.ncbi.nlm.nih.gov/pubmed/32442637 http://dx.doi.org/10.1016/j.neuroimage.2020.116946 |
work_keys_str_mv | AT zolleililla infantfreesurferanautomatedsegmentationandsurfaceextractionpipelinefort1weightedneuroimagingdataofinfants02years AT iglesiasjuaneugenio infantfreesurferanautomatedsegmentationandsurfaceextractionpipelinefort1weightedneuroimagingdataofinfants02years AT ouyangming infantfreesurferanautomatedsegmentationandsurfaceextractionpipelinefort1weightedneuroimagingdataofinfants02years AT grantpellen infantfreesurferanautomatedsegmentationandsurfaceextractionpipelinefort1weightedneuroimagingdataofinfants02years AT fischlbruce infantfreesurferanautomatedsegmentationandsurfaceextractionpipelinefort1weightedneuroimagingdataofinfants02years |