Cargando…

Semisupervised Generative Autoencoder for Single-Cell Data

Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or...

Descripción completa

Detalles Bibliográficos
Autores principales: Trong, Trung Ngo, Mehtonen, Juha, González, Gerardo, Kramer, Roger, Hautamäki, Ville, Heinäniemi, Merja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415880/
https://www.ncbi.nlm.nih.gov/pubmed/31794242
http://dx.doi.org/10.1089/cmb.2019.0337
_version_ 1783569221268013056
author Trong, Trung Ngo
Mehtonen, Juha
González, Gerardo
Kramer, Roger
Hautamäki, Ville
Heinäniemi, Merja
author_facet Trong, Trung Ngo
Mehtonen, Juha
González, Gerardo
Kramer, Roger
Hautamäki, Ville
Heinäniemi, Merja
author_sort Trong, Trung Ngo
collection PubMed
description Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or quantification of surface protein levels from the same cells. In this study, we propose models based on the Bayesian deep learning approach, where protein quantification, available as CITE-seq counts, from the same cells is used to constrain the learning process, thus forming a SemI-SUpervised generative Autoencoder (SISUA) model. The generative model is based on the deep variational autoencoder (VAE) neural network architecture.
format Online
Article
Text
id pubmed-7415880
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Mary Ann Liebert, Inc., publishers
record_format MEDLINE/PubMed
spelling pubmed-74158802020-08-10 Semisupervised Generative Autoencoder for Single-Cell Data Trong, Trung Ngo Mehtonen, Juha González, Gerardo Kramer, Roger Hautamäki, Ville Heinäniemi, Merja J Comput Biol ICML 2019 Conference Papers Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or quantification of surface protein levels from the same cells. In this study, we propose models based on the Bayesian deep learning approach, where protein quantification, available as CITE-seq counts, from the same cells is used to constrain the learning process, thus forming a SemI-SUpervised generative Autoencoder (SISUA) model. The generative model is based on the deep variational autoencoder (VAE) neural network architecture. Mary Ann Liebert, Inc., publishers 2020-08-01 2020-08-04 /pmc/articles/PMC7415880/ /pubmed/31794242 http://dx.doi.org/10.1089/cmb.2019.0337 Text en © Trung Ngo Trong, et al., 2020. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle ICML 2019 Conference Papers
Trong, Trung Ngo
Mehtonen, Juha
González, Gerardo
Kramer, Roger
Hautamäki, Ville
Heinäniemi, Merja
Semisupervised Generative Autoencoder for Single-Cell Data
title Semisupervised Generative Autoencoder for Single-Cell Data
title_full Semisupervised Generative Autoencoder for Single-Cell Data
title_fullStr Semisupervised Generative Autoencoder for Single-Cell Data
title_full_unstemmed Semisupervised Generative Autoencoder for Single-Cell Data
title_short Semisupervised Generative Autoencoder for Single-Cell Data
title_sort semisupervised generative autoencoder for single-cell data
topic ICML 2019 Conference Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415880/
https://www.ncbi.nlm.nih.gov/pubmed/31794242
http://dx.doi.org/10.1089/cmb.2019.0337
work_keys_str_mv AT trongtrungngo semisupervisedgenerativeautoencoderforsinglecelldata
AT mehtonenjuha semisupervisedgenerativeautoencoderforsinglecelldata
AT gonzalezgerardo semisupervisedgenerativeautoencoderforsinglecelldata
AT kramerroger semisupervisedgenerativeautoencoderforsinglecelldata
AT hautamakiville semisupervisedgenerativeautoencoderforsinglecelldata
AT heinaniemimerja semisupervisedgenerativeautoencoderforsinglecelldata