Cargando…
Semisupervised Generative Autoencoder for Single-Cell Data
Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415880/ https://www.ncbi.nlm.nih.gov/pubmed/31794242 http://dx.doi.org/10.1089/cmb.2019.0337 |
_version_ | 1783569221268013056 |
---|---|
author | Trong, Trung Ngo Mehtonen, Juha González, Gerardo Kramer, Roger Hautamäki, Ville Heinäniemi, Merja |
author_facet | Trong, Trung Ngo Mehtonen, Juha González, Gerardo Kramer, Roger Hautamäki, Ville Heinäniemi, Merja |
author_sort | Trong, Trung Ngo |
collection | PubMed |
description | Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or quantification of surface protein levels from the same cells. In this study, we propose models based on the Bayesian deep learning approach, where protein quantification, available as CITE-seq counts, from the same cells is used to constrain the learning process, thus forming a SemI-SUpervised generative Autoencoder (SISUA) model. The generative model is based on the deep variational autoencoder (VAE) neural network architecture. |
format | Online Article Text |
id | pubmed-7415880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Mary Ann Liebert, Inc., publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-74158802020-08-10 Semisupervised Generative Autoencoder for Single-Cell Data Trong, Trung Ngo Mehtonen, Juha González, Gerardo Kramer, Roger Hautamäki, Ville Heinäniemi, Merja J Comput Biol ICML 2019 Conference Papers Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or quantification of surface protein levels from the same cells. In this study, we propose models based on the Bayesian deep learning approach, where protein quantification, available as CITE-seq counts, from the same cells is used to constrain the learning process, thus forming a SemI-SUpervised generative Autoencoder (SISUA) model. The generative model is based on the deep variational autoencoder (VAE) neural network architecture. Mary Ann Liebert, Inc., publishers 2020-08-01 2020-08-04 /pmc/articles/PMC7415880/ /pubmed/31794242 http://dx.doi.org/10.1089/cmb.2019.0337 Text en © Trung Ngo Trong, et al., 2020. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | ICML 2019 Conference Papers Trong, Trung Ngo Mehtonen, Juha González, Gerardo Kramer, Roger Hautamäki, Ville Heinäniemi, Merja Semisupervised Generative Autoencoder for Single-Cell Data |
title | Semisupervised Generative Autoencoder for Single-Cell Data |
title_full | Semisupervised Generative Autoencoder for Single-Cell Data |
title_fullStr | Semisupervised Generative Autoencoder for Single-Cell Data |
title_full_unstemmed | Semisupervised Generative Autoencoder for Single-Cell Data |
title_short | Semisupervised Generative Autoencoder for Single-Cell Data |
title_sort | semisupervised generative autoencoder for single-cell data |
topic | ICML 2019 Conference Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415880/ https://www.ncbi.nlm.nih.gov/pubmed/31794242 http://dx.doi.org/10.1089/cmb.2019.0337 |
work_keys_str_mv | AT trongtrungngo semisupervisedgenerativeautoencoderforsinglecelldata AT mehtonenjuha semisupervisedgenerativeautoencoderforsinglecelldata AT gonzalezgerardo semisupervisedgenerativeautoencoderforsinglecelldata AT kramerroger semisupervisedgenerativeautoencoderforsinglecelldata AT hautamakiville semisupervisedgenerativeautoencoderforsinglecelldata AT heinaniemimerja semisupervisedgenerativeautoencoderforsinglecelldata |