Cargando…
Semisupervised Generative Autoencoder for Single-Cell Data
Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through snapshots of the abundance of mRNA in individual cells. Often there is additional information available besides the single-cell gene expression counts, such as bulk transcriptome data from the same tissue, or...
Autores principales: | Trong, Trung Ngo, Mehtonen, Juha, González, Gerardo, Kramer, Roger, Hautamäki, Ville, Heinäniemi, Merja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415880/ https://www.ncbi.nlm.nih.gov/pubmed/31794242 http://dx.doi.org/10.1089/cmb.2019.0337 |
Ejemplares similares
-
More Accurate Transcript Assembly via Parameter Advising
por: Deblasio, Dan, et al.
Publicado: (2020) -
Modeling Multiplexed Images with Spatial-LDA Reveals Novel Tissue Microenvironments
por: Chen, Zhenghao, et al.
Publicado: (2020) -
Data-driven characterization of molecular phenotypes across heterogeneous sample collections
por: Mehtonen, Juha, et al.
Publicado: (2019) -
Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics
por: Hariri, Ali
Publicado: (2021) -
Semisupervised adversarial neural networks for single-cell classification
por: Kimmel, Jacob C., et al.
Publicado: (2021)