Cargando…
Time series forecasting using singular spectrum analysis, fuzzy systems and neural networks
Hybrid methodologies have become popular in many fields of research as they allow researchers to explore various methods, understand their strengths and weaknesses and combine them into new frameworks. Thus, the combination of different methods into a hybrid methodology allows to overcome the shortc...
Autores principales: | Sulandari, Winita, Subanar, S., Lee, Muhammad Hisyam, Rodrigues, Paulo Canas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415926/ https://www.ncbi.nlm.nih.gov/pubmed/32793431 http://dx.doi.org/10.1016/j.mex.2020.101015 |
Ejemplares similares
-
Multilayer Stock Forecasting Model Using Fuzzy Time Series
por: Javedani Sadaei, Hossein, et al.
Publicado: (2014) -
Neural Networks for Financial Time Series Forecasting
por: Sako, Kady, et al.
Publicado: (2022) -
The Decomposition and Forecasting of Mutual Investment Funds Using Singular Spectrum Analysis
por: Rodrigues, Paulo Canas, et al.
Publicado: (2020) -
Forecasted datasets of electric vehicle consumption on the electricity grid of Spain
por: Cama-Pinto, Dora, et al.
Publicado: (2020) -
Data supporting the improvement of forecasting and control of electricity consumption in hotels
por: Eras, José Cabello, et al.
Publicado: (2019)