Cargando…

Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris

Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here w...

Descripción completa

Detalles Bibliográficos
Autores principales: Holman, Holly A., Wan, Yong, Rabbitt, Richard D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415930/
https://www.ncbi.nlm.nih.gov/pubmed/32771977
http://dx.doi.org/10.1016/j.isci.2020.101407
Descripción
Sumario:Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum(EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.