Cargando…
An automated machine learning approach to predict brain age from cortical anatomical measures
The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to th...
Autores principales: | Dafflon, Jessica, Pinaya, Walter H. L., Turkheimer, Federico, Cole, James H., Leech, Robert, Harris, Mathew A., Cox, Simon R., Whalley, Heather C., McIntosh, Andrew M., Hellyer, Peter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416036/ https://www.ncbi.nlm.nih.gov/pubmed/32415917 http://dx.doi.org/10.1002/hbm.25028 |
Ejemplares similares
-
Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019
por: Da Costa, Pedro F., et al.
Publicado: (2020) -
A guided multiverse study of neuroimaging analyses
por: Dafflon, Jessica, et al.
Publicado: (2022) -
Active Acquisition for multimodal neuroimaging
por: Cole, James H., et al.
Publicado: (2019) -
A GABA Interneuron Deficit Model of the Art of Vincent van Gogh
por: Turkheimer, Federico E., et al.
Publicado: (2020) -
From homeostasis to behavior: Balanced activity in an exploration of embodied dynamic environmental-neural interaction
por: Hellyer, Peter John, et al.
Publicado: (2017)