Cargando…
Predicting Lung Cancer Patients’ Survival Time via Logistic Regression-based Models in a Quantitative Radiomic Framework
BACKGROUND: Selection of the best treatment modalities for lung cancer depends on many factors, like survival time, which are usually determined by imaging. OBJECTIVES: To predict the survival time of lung cancer patients using the advantages of both radiomics and logistic regression-based classific...
Autores principales: | S. P., Shayesteh, I., Shiri, A. H., Karami, R., Hashemian, S., Kooranifar, H., Ghaznavi, A., Shakeri-Zadeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416103/ https://www.ncbi.nlm.nih.gov/pubmed/32802796 http://dx.doi.org/10.31661/JBPE.V0I0.1027 |
Ejemplares similares
-
Logistic Regression—Explanation and Use
por: Hall, G H, et al.
Publicado: (1994) -
Logistic Regression Model for Prediction of Airway Reversibility Using Peak Expiratory Flow
por: Shakeri, Javad, et al.
Publicado: (2012) -
Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis
por: Harrell, Frank E
Publicado: (2001) -
Applied logistic regression
por: Hosmer, David W, et al.
Publicado: (2013) -
Applied logistic regression /
por: Hosmer, David W.
Publicado: (2000)