Cargando…
Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals
Complex natural sounds, such as bird singing, people talking, or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416107/ https://www.ncbi.nlm.nih.gov/pubmed/32559449 http://dx.doi.org/10.1016/j.cub.2020.05.071 |
_version_ | 1783569262654259200 |
---|---|
author | Vetter, Petra Bola, Łukasz Reich, Lior Bennett, Matthew Muckli, Lars Amedi, Amir |
author_facet | Vetter, Petra Bola, Łukasz Reich, Lior Bennett, Matthew Muckli, Lars Amedi, Amir |
author_sort | Vetter, Petra |
collection | PubMed |
description | Complex natural sounds, such as bird singing, people talking, or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it is unclear whether the transfer of auditory information to early visual areas is an epiphenomenon of visual imagery or, alternatively, whether it is driven by mechanisms independent from visual experience. Here, we show that we can decode natural sounds from activity patterns in early “visual” areas of congenitally blind individuals who lack visual imagery. Thus, visual imagery is not a prerequisite of auditory feedback to early visual cortex. Furthermore, the spatial pattern of sound decoding accuracy in early visual cortex was remarkably similar in blind and sighted individuals, with an increasing decoding accuracy gradient from foveal to peripheral regions. This suggests that the typical organization by eccentricity of early visual cortex develops for auditory feedback, even in the lifelong absence of vision. The same feedback to early visual cortex might support visual perception in the sighted [1] and drive the recruitment of this area for non-visual functions in blind individuals [2, 3]. |
format | Online Article Text |
id | pubmed-7416107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-74161072020-08-13 Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals Vetter, Petra Bola, Łukasz Reich, Lior Bennett, Matthew Muckli, Lars Amedi, Amir Curr Biol Article Complex natural sounds, such as bird singing, people talking, or traffic noise, induce decodable fMRI activation patterns in early visual cortex of sighted blindfolded participants [1]. That is, early visual cortex receives non-visual and potentially predictive information from audition. However, it is unclear whether the transfer of auditory information to early visual areas is an epiphenomenon of visual imagery or, alternatively, whether it is driven by mechanisms independent from visual experience. Here, we show that we can decode natural sounds from activity patterns in early “visual” areas of congenitally blind individuals who lack visual imagery. Thus, visual imagery is not a prerequisite of auditory feedback to early visual cortex. Furthermore, the spatial pattern of sound decoding accuracy in early visual cortex was remarkably similar in blind and sighted individuals, with an increasing decoding accuracy gradient from foveal to peripheral regions. This suggests that the typical organization by eccentricity of early visual cortex develops for auditory feedback, even in the lifelong absence of vision. The same feedback to early visual cortex might support visual perception in the sighted [1] and drive the recruitment of this area for non-visual functions in blind individuals [2, 3]. Cell Press 2020-08-03 /pmc/articles/PMC7416107/ /pubmed/32559449 http://dx.doi.org/10.1016/j.cub.2020.05.071 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vetter, Petra Bola, Łukasz Reich, Lior Bennett, Matthew Muckli, Lars Amedi, Amir Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title | Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title_full | Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title_fullStr | Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title_full_unstemmed | Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title_short | Decoding Natural Sounds in Early “Visual” Cortex of Congenitally Blind Individuals |
title_sort | decoding natural sounds in early “visual” cortex of congenitally blind individuals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416107/ https://www.ncbi.nlm.nih.gov/pubmed/32559449 http://dx.doi.org/10.1016/j.cub.2020.05.071 |
work_keys_str_mv | AT vetterpetra decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals AT bolałukasz decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals AT reichlior decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals AT bennettmatthew decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals AT mucklilars decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals AT amediamir decodingnaturalsoundsinearlyvisualcortexofcongenitallyblindindividuals |