Cargando…
Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source
RESEARCH BACKGROUND: In this study the content and composition of lipids in ergosterol-reduced Sheffersomyces stipitis M12 strain grown on glycerol as a carbon source is determined. Blocking the ergosterol synthesis route in yeast cells is a recently proposed method for increasing S-adenosyl-l-methi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Zagreb Faculty of Food Technology and Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416122/ https://www.ncbi.nlm.nih.gov/pubmed/32831572 http://dx.doi.org/10.17113/ftb.58.02.20.6540 |
_version_ | 1783569265892261888 |
---|---|
author | Križanović, Stela Stanzer, Damir Mrvčić, Jasna Hanousek-Čiča, Karla Kralj, Elizabeta Čanadi Jurešić, Gordana |
author_facet | Križanović, Stela Stanzer, Damir Mrvčić, Jasna Hanousek-Čiča, Karla Kralj, Elizabeta Čanadi Jurešić, Gordana |
author_sort | Križanović, Stela |
collection | PubMed |
description | RESEARCH BACKGROUND: In this study the content and composition of lipids in ergosterol-reduced Sheffersomyces stipitis M12 strain grown on glycerol as a carbon source is determined. Blocking the ergosterol synthesis route in yeast cells is a recently proposed method for increasing S-adenosyl-l-methionine (SAM) production. EXPERIMENTAL APPROACH: The batch cultivation of M12 yeast was carried out under aerobic conditions in a laboratory bioreactor with glycerol as carbon source, and with pulsed addition of methionine. Glycerol and SAM content were monitored by high-performance liquid chromatography, while fatty acid composition of different lipid classes, separated by solid phase extraction, was determined by gas chromatography. RESULTS AND CONCLUSION: Despite the reduced amount of ergosterol in yeast cells, thanks to the reorganized lipid metabolism, M12 strain achieved high biomass yield and SAM production. Neutral lipids prevailed (making more than 75% of total lipids), but their content and composition differed significantly in the two tested types of yeast. Unsaturated and C18 fatty acids prevailed in both the M12 strain and wild type. In all fractions except free fatty acids, the index of unsaturation in M12 strain was lower than in the wild strain. Our tested strain adjusts itself by changing the content of lipids (mainly phospholipids, sterols and sterol esters), and with desaturation adjustments, to maintain proper functioning and fulfil increased energy needs. NOVELTY AND SCIENTIFIC CONTRIBUTION: Reorganization of S. stipitis lipid composition caused by blocking the metabolic pathway of ergosterol synthesis was presented. A simple scheme of actual lipid metabolism during active SAM production in S. stipitis, grown on glycerol was constructed and shown. This fundamental knowledge of lipid metabolic pathways will be a helpful tool in improving S. stipitis as an expression host and a model organism, opening new perspectives for its applied research. |
format | Online Article Text |
id | pubmed-7416122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | University of Zagreb Faculty of Food Technology and Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74161222020-08-20 Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source Križanović, Stela Stanzer, Damir Mrvčić, Jasna Hanousek-Čiča, Karla Kralj, Elizabeta Čanadi Jurešić, Gordana Food Technol Biotechnol Original Scientific Papers RESEARCH BACKGROUND: In this study the content and composition of lipids in ergosterol-reduced Sheffersomyces stipitis M12 strain grown on glycerol as a carbon source is determined. Blocking the ergosterol synthesis route in yeast cells is a recently proposed method for increasing S-adenosyl-l-methionine (SAM) production. EXPERIMENTAL APPROACH: The batch cultivation of M12 yeast was carried out under aerobic conditions in a laboratory bioreactor with glycerol as carbon source, and with pulsed addition of methionine. Glycerol and SAM content were monitored by high-performance liquid chromatography, while fatty acid composition of different lipid classes, separated by solid phase extraction, was determined by gas chromatography. RESULTS AND CONCLUSION: Despite the reduced amount of ergosterol in yeast cells, thanks to the reorganized lipid metabolism, M12 strain achieved high biomass yield and SAM production. Neutral lipids prevailed (making more than 75% of total lipids), but their content and composition differed significantly in the two tested types of yeast. Unsaturated and C18 fatty acids prevailed in both the M12 strain and wild type. In all fractions except free fatty acids, the index of unsaturation in M12 strain was lower than in the wild strain. Our tested strain adjusts itself by changing the content of lipids (mainly phospholipids, sterols and sterol esters), and with desaturation adjustments, to maintain proper functioning and fulfil increased energy needs. NOVELTY AND SCIENTIFIC CONTRIBUTION: Reorganization of S. stipitis lipid composition caused by blocking the metabolic pathway of ergosterol synthesis was presented. A simple scheme of actual lipid metabolism during active SAM production in S. stipitis, grown on glycerol was constructed and shown. This fundamental knowledge of lipid metabolic pathways will be a helpful tool in improving S. stipitis as an expression host and a model organism, opening new perspectives for its applied research. University of Zagreb Faculty of Food Technology and Biotechnology 2020-06 /pmc/articles/PMC7416122/ /pubmed/32831572 http://dx.doi.org/10.17113/ftb.58.02.20.6540 Text en http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Scientific Papers Križanović, Stela Stanzer, Damir Mrvčić, Jasna Hanousek-Čiča, Karla Kralj, Elizabeta Čanadi Jurešić, Gordana Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title | Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title_full | Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title_fullStr | Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title_full_unstemmed | Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title_short | Lipid Composition of Sheffersomyces stipitis M12 Strain Grown on Glycerol as a Carbon Source |
title_sort | lipid composition of sheffersomyces stipitis m12 strain grown on glycerol as a carbon source |
topic | Original Scientific Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416122/ https://www.ncbi.nlm.nih.gov/pubmed/32831572 http://dx.doi.org/10.17113/ftb.58.02.20.6540 |
work_keys_str_mv | AT krizanovicstela lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource AT stanzerdamir lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource AT mrvcicjasna lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource AT hanousekcicakarla lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource AT kraljelizabeta lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource AT canadijuresicgordana lipidcompositionofsheffersomycesstipitism12straingrownonglycerolasacarbonsource |