Cargando…
Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization
Brain-computer interface (BCI) is a communication and control system linking the human brain and computers or other electronic devices. However, irrelevant channels and misleading features unrelated to tasks limit classification performance. To address these problems, we propose an efficient signal...
Autores principales: | Qi, Yingji, Ding, Feng, Xu, Fangzhou, Yang, Jimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416234/ https://www.ncbi.nlm.nih.gov/pubmed/32802031 http://dx.doi.org/10.1155/2020/8890477 |
Ejemplares similares
-
A novel channel selection method for optimal classification in different motor imagery BCI paradigms
por: Shan, Haijun, et al.
Publicado: (2015) -
Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection
por: Li, Zina, et al.
Publicado: (2020) -
An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System
por: Feng, Jian Kui, et al.
Publicado: (2019) -
Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection
por: Ortega, Julio, et al.
Publicado: (2016) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016)