Cargando…
Classification of Task-State fMRI Data Based on Circle-EMD and Machine Learning
In the research work of the brain-computer interface and the function of human brain work, the state classification of multitask state fMRI data is a problem. The fMRI signal of the human brain is a nonstationary signal with many noise effects and interference. Based on the commonly used nonstationa...
Autores principales: | Gui, Renzhou, Chen, Tongjie, Nie, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416235/ https://www.ncbi.nlm.nih.gov/pubmed/32802027 http://dx.doi.org/10.1155/2020/7691294 |
Ejemplares similares
-
A Constrained ICA-EMD Model for Group Level fMRI Analysis
por: Wein, Simon, et al.
Publicado: (2020) -
Design of Deep Learning Model for Task-Evoked fMRI Data Classification
por: Huang, Xiaojie, et al.
Publicado: (2021) -
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
por: Du, Wei, et al.
Publicado: (2012) -
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
por: Kannurpatti, Sridhar S., et al.
Publicado: (2012) -
Regression‐based machine‐learning approaches to predict task activation using resting‐state fMRI
por: Cohen, Alexander D., et al.
Publicado: (2019)