Cargando…
An Epilepsy Detection Method Using Multiview Clustering Algorithm and Deep Features
The automatic detection of epilepsy is essentially the classification of EEG signals of seizures and nonseizures, and its purpose is to distinguish the different characteristics of seizure brain electrical signals and normal brain electrical signals. In order to improve the effect of automatic detec...
Autores principales: | Zhan, Qianyi, Hu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416238/ https://www.ncbi.nlm.nih.gov/pubmed/32802149 http://dx.doi.org/10.1155/2020/5128729 |
Ejemplares similares
-
Incomplete Multiview Clustering via Late Fusion
por: Ye, Yongkai, et al.
Publicado: (2018) -
A Multiview Deep Learning Method for Brain Functional Connectivity Classification
por: Ji, Yu, et al.
Publicado: (2022) -
Multiview Deep Forest for Overall Survival Prediction in Cancer
por: Li, Qiucen, et al.
Publicado: (2023) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017) -
Multiview clustering of multi-omics data integration by using a penalty model
por: AL-kuhali, Hamas A., et al.
Publicado: (2022)